
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 3v10 

These PowerPoint color 

diagrams can only be used by 

instructors if the 3rd Edition 

has been adopted for his/her 

course. Permission is given to 

individuals who have 

purchased a copy of the third 

edition with CD-ROM 

Electronic Materials and 

Devices to use these slides in 

seminar, symposium and 

conference presentations 

provided that the book title, 

author and © McGraw-Hill are 

displayed under each diagram. 

Version 3.1  updated on 1 January 2013 



Fig 4.1 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Formation of molecular 

orbitals, bonding, and 

antibonding ( and  

*) when two H atoms 

approach each other. 

The two electrons pair 

their spins and occupy 

the bonding orbital . 
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Linear Combination of Atomic Orbitals 

Two identical atomic orbitals 1s on atoms A and B can be 
combined linearly in two different ways to generate two 

separate molecular orbitals  and *   

  

 and * generated from a  

linear combination of atomic orbitals (LCAO) 
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Fig 4.2 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Electron probability distributions for bonding and antibonding orbitals,  and  

*. 

(b) Lines representing contours of constant probability (darker lines represent greater 

relative probability). 



Fig 4.3 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Energy of  and * vs. the interatomic separation R. 

(b) Schematic diagram showing the changes in the electron energy as two isolated H atoms,  

far left and far right, come together to form a hydrogen molecule. 



Fig 4.4 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) There is one resonant frequency, 0 in an isolated RLC circuit. 

(b) There are two resonant frequencies in two coupled RLC circuits: one below and 

the other above 0  



Fig 4.5 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Two He atoms have four electrons. When He atoms come together, two of the electrons enter 

the E level and two the E* level, so the overall energy is greater than two isolated He atoms. 



Fig 4.6 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

H has one half-empty 1s orbital. 

 

F has one half-empty px orbital but full py and pz orbitals. The overlap between 1s and  

px produces a bonding orbital and an antibonding orbital. The two electrons fill the bonding 

orbital and thereby form a covalent bond between H and F. 



Fig 4.7 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Three molecular orbitals from three 1s atomic orbitals overlapping in three different ways. 

(b) The energies of the three molecular orbitals, labeled a, b, and c, in a system with three H  

atoms. 



Fig 4.8 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

The formation of 2s energy band from the 2s orbitals when N Li atoms come together to form the 

Li solid.  

There are N 2s electrons, but 2N states in the band. The 2s band is therefore only half full.  

The atomic 1s orbital is close to the Li nucleus and remains undisturbed in the solid. Thus, each  

Li atom has a closed K shell (full 1s orbital). 



Fig 4.9 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

As Li atoms are brought together from infinity, the atomic orbitals overlap and give rise to bands. 

Outer orbitals overlap first. The 3s orbitals give rise to the 3s band, 2p orbitals to the 2p band,  

and so on. The various bands overlap to produce a single band in which the energy is nearly 

continuous. 



Fig 4.10 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

In a metal, the various energy bands overlap to give a single energy band that is only partially 

full of electrons. There are states with energies up to the vacuum level, where the electron is 

free. 



Fig 4.11 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Typical electron energy band diagram for a metal. 

All the valence electrons are in an energy band, which they only partially fill. The top of the 

band is the vacuum level, where the electron is free from the solid (PE = 0). 
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Work function  

 The energy required to excite an electron from the Fermi level 

to the vacuum level, that is, to liberate the electron from the 

metal, is called the work function  of the metal. 

 The electrons in the energy band of a metal are loosely bound valence 

electrons, which become free in the crystal and thereby form a kind of 

electron gas within the crystal. It is this electron gas that holds the 

metal ions together in the crystal structure and constitutes the metallic 

bond.  

Electron gas in a metal 
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Fig 4.12 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Energy band diagram of a metal. (b) In the absence of a field, there are as many 

electrons moving right as there are moving left. The motions of two electrons at each 

energy cancel each other as for a and b. (c) In the presence of a field in the ­x direction, 

the electron a accelerates and gains energy to a’ where it is scattered to an empty state 

near EFO but moving in the -x direction.  The average of all momenta values is along the 

+x direction and results in a net electrical current. 



Fig 4.13 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Conduction in a metal is due to the drift of electrons around the Fermi level. When a voltage is  

applied, the energy band is bent to be lower at the positive terminal so that the electron’s  

potential energy decreases as it moves toward the positive terminal.  



Fig 4.14 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

The interior of Jupiter is a believed to contain liquid hydrogen, which is metallic. 

SOURCE: Drawing adapted from T. Hey and P. Walters, The Quantum Universe, 

Cambridge, MA: Cambridge University Press, 1988, p. 96, figure 7.1. 



Fig 4.15 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

The electronic structure of Si 



Fig 4.16 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Si is in Group IV in the Periodic Table. An isolated Si atom has two electrons in the 3s and  

two electrons in the 3p orbitals. 

(b) When Si is about to bond, the one 3s orbital and the three 3p orbitals become perturbed and 

mixed to form four hybridized orbitals, hyb, called sp3 orbitals, which are directed toward the  

corners of a tetrahedron. The hyb orbital has a large major lobe and a small back lobe. Each 

hyb orbital takes one of the four valence electrons. 
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Hybridization 

sp3 hybridization 

 

 The 3s and 3p energy levels are quite close, and when five Si 

atoms approach each other, the interaction results in the four 

orbitals  (3s),  (3px),  (3py) and  (3pz) mixing together to 

form four new hybrid orbitals, which are directed in 

tetrahedral directions; that is, each one is aimed as far away 

from the others as possible.  

 



Fig 4.17 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Formation of energy bands in the Si crystal first involves hybridization of 3s and 3p orbitals to four 

identical hyb orbitals which make 109.5
o
 with each other as shown in (b). (c) hyb orbitals on two 

neighboring Si atoms can overlap to form B or A. The first is a bonding orbital (full) and the second is an 

antibonding orbital (empty). In the crystal yB overlap to give the valence band (full) and A overlap to give 

the conduction band (empty). 



Fig 4.18 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Energy band diagram of a semiconductor. CB is the conduction band and VB is the valence 

band. AT 0 K, the VB is full with all the valence electrons. 



Fig 4.19 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) An external force Fext applied to an 

Electron in a vacuum results in an acceler- 

ation avac = Fext / me. 

(b) An external force Fext applied to an electron 

in a crystal results in an acceleration 

acryst = Fcryst / me* 
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Fig 4.20 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) In the solid there are N atoms and N extended electron wavefunctions from 1 all the way 

to N. There are many wavefunctions, states, that have energies that fall in the central regions  

Of the energy band.  

(b) The distribution of states in the energy band; darker regions have a higher number of states. 

(c) Schematic representation of the density of states g(E) versus energy E. 



Fig 4.21 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Each state, or electron wavefunctions in the crystal, can be represented by a box at n1, n2. 



Fig 4.22 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

In three dimensions, the volume defined by a sphere of radius n' and the positive axes n1, n2, 

and n3, contains all the possible combinations of positive n1, n2, and n3 values that satisfy 
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Density of States 

g(E) = Density of states 

 

g(E) dE is the number of  states (i.e., wavefunctions) in 
the energy interval E to (E + dE) per unit volume of 
the sample. 
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Fig 4.23 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) High energy electron bombardment knocks out an electron from the closed inner  L-shell leaving an empty state. An 

electron from the energy band of the metal drops into the L-shell to fill the vacancy and emits a soft X-ray photon in the 

process. (b) The spectrum (intensity vs photon energy) of soft X-ray emission from a metal involves a range of energies 

corresponding to transitions from the bottom of the band and from the Fermi level to the L-shell.  The intensity increases with 

energy until around EF where it drops sharply. (c) and (d) contrast the emission spectra from a solid and vapor (isolated gas 

atoms). 



Fig 4.24 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Two electrons with initial wavefunctions 1 and 2 at E1 and E2 interact and end up  

different energies E3 and E4. Their corresponding wavefunctions are 3 and 4.  



Fig 4.25 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

The Boltzmann energy distribution 

describes the statistics of particles, 

such as electrons, when there are  

many more available states than the  

number of particles. 
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Boltzmann Classical Statistics 

Boltzmann Statistics for two energy levels 
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Fig 4.26 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

The fermi-Dirac f(E) describes the statistics 

of electrons in a solid. The electrons  

interact with each other and the environment, 

obeying the Pauli exclusion principle. 
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Fermi-Dirac Statistics 

where EF is a constant called the Fermi energy.  

 

f(E) = the probability of finding an electron in a state with energy 

E is given 
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Fig 4.27 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Above 0K, due to thermal excitation, some of the electrons are at energies above EF. 

(b) The density of states, g(E) versus E in the band. 

(c) The probability of occupancy of a state at an energy E is f (E). 

(d) The product of g(E) f (E) is the number of electrons per unit energy per unit volume,  

or the electron concentration per unit energy. The area under the curve on the energy  

axis is the concentration of electrons in the band.  
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Fermi Energy 

Fermi energy at T (K) 
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n is the concentration of conduction electrons (free carrier concentration) 
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Average energy per electron 

Average energy per electron at T (K) 
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Fig 4.28 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Electrons are more energetic in Mo, so they tunnel to the surface of Pt. 

(b) Equilibrium is reached when the Fermi levels are lined up. 

 When two metals are brought together, there is a contact potential V. 



Fig 4.29 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

There is no current when a closed circuit is formed by two different metals, even though  

there is a contact potential at each contact.  

The contact potentials oppose each other. 
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Fermi Energy Significance 

 For a given metal the Fermi energy represents the 

free energy per electron called the electrochemical 

potential. The Fermi energy is a measure of the 

potential of an electron to do electrical work (eV) or 

nonmechanical work, through chemical or physical 

processes. 



Fig 4.30 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

The Seebeck effect. A temperature gradient along a conductor gives rise to a potential difference. 
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Seebeck Effect 

 Seebeck effect (thermoelectric power) 

 

 is the built-in potential difference V across a material due to 
a temperature difference T  across it. 

T

V
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
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 Sign of S 

 

 is the potential of the cold side with respect to the hot side; negative if 

electrons have accumulated in the cold side. 
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Seebeck coefficient for metals 

x
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 Mott and Jones thermoelectric power equation 

 

 x = a numerical constant that takes into account how various charge 
transport parameters, such as the mean free path l, depend on the electron 

energy.  

 

 x values are tabulated in Table 4.3 
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Fig 4.31 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Consider two neighboring regions H (hot) and C (cold) with widths corresponding to the mean 
Free paths l and l' in H and C.  

Half the electrons in H would be moving in the +x direction and the other half in the –x direction. 

Half of the electrons in H therefore cross into C, and half in C cross into H. 



Fig 4.32 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) If Al wires are used to measure the Seebeck voltage across the Al rod, then the net emf is zero. 

(b) The Al and Ni have different Seebeck coefficients. There is therefore a net emf in the Al-Ni  

Circuit between the hot and cold ends that can be measured. 
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Thermocouple 

We can only measure differences between thermoelectric powers of 

materials.  

 

When two different metals A and B are connected to make a thermocouple, 

then the net EMF is the voltage difference between the two elements. 
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2)( TbTaVAB 

Thermocouple Equation 
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Thermocouples are widely used to measure the 

temperature. 

LEFT: A thermocouple pair embedded in a 

stainless steel sheath-probe. The thermocouple 

junction inside the probe is in thermal contact 

with the probe tip, and, electrically insulated 

from the probe metal. 

|SOURCE: Courtesy of Omega 



Fig 4.33 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Output emf versus temperature (˚C) for various thermocouple between 0 and 1000 ˚C 
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Examples of vacuum tubes using thermionic emission 

LEFT: Klystrons are used as the 

final amplifier stage in many 

UHF television transmitters. 

|SOURCE: Courtesy of Thales 

TOP: UHF Tetrode vacuum tubes that can 

handle up to 30 kW, and provide gains up to 

17 dB 

|SOURCE: Courtesy of Thales 



Fig 4.34 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Thermionic electron emission in a vacuum tube. 

(b) Current-voltage characteristics of a vacuum diode. 



Fig 4.35 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Fermi-Dirac function f(E) and the energy density of electrons n(E) (electrons per unit energy  

And per unit volume) at three different temperatures. The electron concentration extends more  

And more to higher energies as the temperature increases. Electrons with energies in excess of  

EF+ can leave the metal (thermionic emission) 
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Thermionic Emission 

Richardson-Dushman thermionic emission equation 
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Fig 4.36 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) PE of the electron near the surface of a conductor.  

(b) Electron PE due to an applied field, that is, between cathode and anode. 

(c) The overall PE is the sum. 
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Schottky effect 

 When a positive voltage is applied to the anode with 
respect to the cathode, the electric field at the cathode 
helps the thermionic emission process by lowering the 
PE barrier  by an amount bSE1/2. The current density 
in field assisted thermionic emission is 
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Fig 4.37 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Field assisted emission is field assisted tunneling from the cathode 

(a) Field emission is the tunneling of 

an electron at an energy EF through  

narrow PE barrier induced by a large 

applied field. 

(b) For simplicity, we take the barrier 

to be rectangular. 

(c) A sharp point cathode has the  

maximum field at the tip where the  

field emission of electrons occurs. 
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Field-assisted Tunneling 

Field-assisted tunneling: the Fowler-Nordheim equation 
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Fig 4.38 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Spindt-type cathode and the basic structure of one of the pixels in the FED. 

(b) Emission (anode) current versus gate voltage. 

(c) Fowler-Nordheim plot that confirms field emission. 



Fig 4.39 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 
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CNT (Carbon NanoTube) 

 A carbon nanotube (CNT) is a very thin filament-like carbon 

molecule whose diameter is in the nanometer range but whose 

length can be quite long, e.g., 10-100 microns, depending on 

how it is grown or prepared. 
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SOURCE: Courtesy of Professor W.I. Milne, University of Cambridge, England. Carbon nanotubes as field emission sources, W. I. 

Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. Thien Binh and O. Groening, Journal 

of Materials Chemistry, 14, 933, 2004 

Cross-section of a field emission display showing a Spindt tip cathode, (b) Sony portable 

DVD player using a field emission display.  



Fig 4.40 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Harmonic vibrations of an atom about its equilibrium position assuming its neighbors are  

 fixed. 

(b) The PE curve V(x) versus displacement from equilibrium, x. 

(c) The energy is quantized. 
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Quantum Harmonic Oscillator 

Harmonic potential energy 
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Angular vibrational frequency of the oscillator.  
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Quantum number = 0, 1, 2, … 



Fig 4.41 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) A chain of N atoms through a crystal in the absence of vibrations. 

(b) Coupled atomic vibrations generate a traveling longitudinal (L) wave along x. Atomic 

displacements (ur) are parallel to x. 

(c) A transverse (T) wave traveling along x. Atomic displacements (ur) are perpendicular to 

the x axis. (b) and (c) are snapshots at one instant. 
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Lattice Waves: Phonons 

Traveling-wave-type lattice vibrations along x 
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Fig 4.42 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

(a) Frequency  versus wavevector K relationship for lattice waves. 

(b) Group velocity vg versus wavevector K. 
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Group Velocity 

The velocity at which traveling waves carry energy 
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Four examples of standing waves in a linear crystal corresponding to q = 1, 2, 4, and N. 

q is maximum when alternating atoms are vibrating in opposite directions. A portion from 

a very long crystal is shown. 



Fig 4.44 

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 

Density of states for phonons in copper. The solid curve is deduced from experiments on  

Neutron scattering. The broken curve is the three-dimensional Debye approximation, scaled 

So that the areas under the two curves are the same. 

This requires that max  4.5  1013 rad s-1, or a Debye characteristic temperature TD = 344 K. 
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Debye constant-volume molar heat capacity curve. The dependence of the molar 

heat capacity Cm  on temperature with respect to the Debye temperature: Cm vs. 

T/TD. For Si, TD = 625 K so that at room temperature (300 K), T/TD = 0.48  and 

Cm is only 0.81(3R). 
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Debye frequency and temperature 

Debye frequency: maximum vibration (angular) frequency in the crystal 
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Debye heat capacity 
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Atoms executing longitudinal vibrations parallel to x. 
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Phonons generated in the hot region travel toward the cold region and thereby transport heat  

energy. Phonon-phonon unharmonic interaction generates a new phonon whose momentum  

is toward the hot region.  
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Thermal Conductivity 

Thermal conductivity   

 

 Measures the rate at which heat can be transported through a medium per 

unit area per unit temperature gradient. 

phph
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Thermal conductivity of sapphire and MgO as a function of temperature. 
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Low-angle scattering of a conduction electron by a phonon. 
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Electrical Conductivity 

Electrical conductivity T > TD 
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An electron wave propagation through a linear lattice. For certain k values, the reflected  

waves at successive atomic planes reinforce each other, giving rise to a reflected wave 

traveling in the backward direction. The electron cannot then propagate through the crystal. 
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Forward and backward waves in the crystal with k =  /a give rise to two possible standing 

waves c and s. Their probability density distributions | c |
2 and | s |

2 have maxima either 

at the ions or between the ions, respectively. 
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The energy of the electron as a function of its wavevectore k inside a one-dimensional crystal. 

There are discontinuities in the energy at k =  n/a, where the waves suffer Bragg reflections 

in the crystal. For example, there can be no energy value for the electron between Ec and Es.  

therefore, Es-Ec is an energy gap at k =  /a. Away from the critical k values, the E-k vector  

is like that of a free electron, with E increasing with k as                   . In a solid, these energies 

fall within an energy band.    
emkE 2/2
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Diffraction of the electron in a two dimensional cubic crystal. Diffraction occurs 

whenever k has a component satisfying k1 = ±n/a, k2 = ±n/a or  k3 = 

±21/2n/a. In general terms, when ksinq = n/d. 
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Bragg Diffraction  

The diffraction conditions can all be expressed through the Bragg 

diffraction condition 2d sinq = n, or 

d
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Bragg diffraction condition 

Interplanar separation of the planes involved in the diffraction 
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The E-k behavior for the electron along different directions in the two-dimensional crystal. 

The energy gap along [10] is at /a whereas it is at 2/a along [11]. 
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(a) For the electron in a metal, there is no apparent energy gap because the second BZ (Brillouin 

zone) along [10] overlaps the first BZ along [11]. Bands overlap the energy gaps. Thus, the  

electron can always find any energy by changing its direction.  

(b) For the electron in a semicondcuctor, there is an energy gap arising from the overlap of the  

energy gaps along the [10] and [11] directions. The electron can never have an energy within this 

energy gap Eg. 
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The Brillouin zones in two dimensions for the cubic lattice.  

The Brillouin zones identify the boundaries where there are discontinuities in the energy  

(energy gaps) 
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Energy contours in k space (space defined by kx, ky). 

Each contour represents the same energy value. Any point P on the contour gives the values 

of kx and ky for that energy in that direction from O. For point P, E = 3 eV and OP along  

[11] is k. 

(a) In a metal, the lowest energy in the second zone (5 eV) is lower than the highest energy  

(6 eV) in the first zone. There is an overlap of energies between the Brillouin zones. 

(b) In a semiconductor or an insulator, there is an energy gap between the highest energy  

contour (6 eV) in the first zone and the lowest energy contour (10 eV) in the second zone. 
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Schematic sketches of Fermi surfaces in two dimensions, representing various materials  

qualitatively. 

(a) Monovalent group IA metals. 

(b) Group IB metals. 

(c) Be (Group IIA), Zn, and Cd (Group IIB). 

(d) A semiconductor. 
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Gruneisen’s Model of Thermal Expansion 

Linear expansion coefficient  
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Gruneisen’s Law 
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The Gruneisen parameter 

Thermal expansion coefficient 

Specific heat capacity 

Density 

Note: Due to an error, the numerical constant “1/3” was printed as “3”. There is a derivation in the web-article 

Thermal Expansion and Thermal Fatigue under Selected Topics at http://electronicmaterials.usask.ca, this is “1/3”. 
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Material    

g cm-3 

 

10-6 K-1 

K 

 GPa 

cs  

J kg-1 K-1 

G 

Iron (metallic, BCC) 7.9 12 170 450 1.7 

Copper (metallic, FCC) 8.96 17 140 385 2.1 

NaCl (ionic) 2.17 44 25 850 1.8 

CsI (ionic) 4.51 48 13 201 2.1 

Germanium (covalent) 5.32  6 77 322 0.81 

Silicon (covalent) 2.32 2.6 99 703 0.47 

Glass (covalent-ionic) 2.45 8 50 800 0.61 

ZnSe (ionic/covalent) 5.27 7.4 62 350 0.75 

Tellurium (covalent/van der 

Waals) 

6.24 17 30 200 1.23 

Polystyrene (van der Waals) 1.1 80 ~3 1300 0.50 

Polyethylene terephthalate 

PET (van der Waals) 

1.38 70 ~3 1200 0.38 

The Grüneisen parameter for some selected materials with different types of interatomic 

bonding. Only typical values are used; and for certain materials there can be significant 

variation in quoted data in the literature5. Data selectively extracted and combined from a 

number of different sources.  
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Examples of photomultiplier tubes 

|SOURCE: Courtesy of Hamamatsu 

The photomultiplier tube 
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